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Topics not included 
(recent papers/theses, open for discussion during this visit) 

1. Turbulent combustion 
2. Turbulent mixing 
3. Inertial Confinement Fusion: UQ  
4. Inertial Confinement Fusion: fluid transport 
5. Short term weather forecasts of cloud cover 
6. Cardiac electrophysiology and fibrillation 
7. An API for Front Tracking 
8. Financial modeling 



The Navier-Stokes Equation 
Incompressible Fluid Dynamics 
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The Navier-Stokes Equation 
Incompressible Fluid Dynamics 
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Multiscale Science 

• Problems which involve a span of interacting 
length scales 

– Easy case: fine scale theory defines coefficients 
and parameters used by coarse scale theory 

• Example: viscosity in Navier-Stokes equation, comes 
from Boltzmann equation, theory of interacting 
particles, or molecular dynamics, with Newton’s 
equation for particles and forces between particles 



Multiscale 

• Hard case 

– Fine scale and coarse scales are coupled 

– Solution of each affects the other 

– Generally intractable for computation 
• Example:  

– Suppose a grid of 10003 is used for coarse scale part of the problem. 

– Suppose fine scales are 10 or 100 times smaller 

– Computational effort increases by factor of 104 or 108 

– Cost not feasible 

– Turbulence is classical example of multiscale science 



Origin of Multiscale Science as  
a Concept 

 

 

•   author =       "J. Glimm and D. H. Sharp", 

•   title =        "Multiscale Science", 

•   journal =      "SIAM News", 

•   year =         "1997", 

•   month =        Oct. 

 

 

 



Turbulence Theories 

• Many theories, many papers 

• Last major unsolved problem of classical 
physics 

• New development 

– Large scale computing 

– Computing in general allows solutions for 
nonlinear problems 

– Generally fails for multiscale problems 



Four Useful Theories for 
Turbulence 

• Large Eddy Simulation (LES) and Subgrid Scale 
Models (SGS) 

• Kolmogorov 41 

• Renormalization group 

• PDF convergence in the LES regime 

 
} 



Need for turbulence models  

• What is turbulence? 

– Complex flow characterized by many interacting 
vortices, of all different sizes 

• What is a model? 

– What we do when effects are too fine scale to 
compute 

– Effects of unresolved scales on the resolved scales 



LES and SGS 

 

• Based on the idea that effect of small scales 
on the large ones can be estimated and 
compensated for. 



Levels of accuracy in computing 

• DNS = direct numerical simulation 
– All important length scale are resolved numerically. 
– Rarely practical for most important problems 

• LES = large eddy simulations 
– Compute some but not all of the turbulent scales 
– Model the scales not computed 
– How to assess convergence 

• In terms of probability distributions, ie. pdfs 

• RANS = Reynolds averaged Navier-Stokes 
– Model all of the turbulent length scales 
– Simulate only the largest, problem dependent ones 



Derivation of Models 

• Models can be postulated (and not derived), 
parameters fit to experiments 

– Typically the required parameters change from one flow to 
another, so this type of model is unsatisfactory 

• Models can be derived, parameters determined 
numerically from the simulation 

– Second class of models are called dynamic 

– No free parameters 



Subgrid models for turbulence 

• Typical equations have the form 

• Averaged equations: 
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Subgrid models for turbulent flow 
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Subgrid Scale Models (Moin et al.) 

• No free (adjustable) parameters in the SGS terms 
• Parameters are found dynamically from the simulation itself 
• After computing at level Delta x, average solution onto 

coarser mesh. On coarse mesh, the SGS terms are computed 
two ways: 
– Directly on coarse mesh as on the fine mesh, with a formula 
– Indirectly, by averaging the fine grid terms to be closed onto the 

coarse grid. 
– Identity of two determinations for SGS terms becomes an equation for 

the coefficient (on the coarse grid), otherwise missing. 
– Assume: coefficient has a known relation to Delta x and otherwise is 

determined by an asymptotic coefficient. Thus on a fine LES grid the 
coefficient is known by this reasoning. 



Definitions 

   

 

2
2 2

,

2

1
             Strain rate

2

2      | | = Dissipation rate

    Reynolds Stress

  LES equations

             

ji
ij

j i

ij ij

i j

ij i j i j

i j ijj ij ij

i i i

vv
S

x x

A A S

v v v v

v v pv d

t x x x

x v



  

  



 
     

 

  

   
  

   

 



                 Smagorinsky model for 

                                        Mesh block average

/                        Mass weighted mesh block averagev v





  



LES Challenge 

What is the coefficient for 
the Smagorinsky model for 
turbulent diffusion? 
 
Answer: next 4 slides 
(same answer, 4 times) 



Dynamic Turbulent Closures 

• Unknown coefficients come from simulation itself, thus they 
are called dynamic 

• Form of averaged nonlinear expression is a gradient. Basic 
idea due to Smagorinsky 
– Gives rise to turbulent viscosity, turbulent thermal or mass diffusion 

– Missing and problem dependent coefficient to be determined 

• Turbulent closures express the influence of small scales (not 
resolved numerically) on the large scales (resolved) 

• Dynamic closures: one of the few successful and widely 
accepted theories of turbulence. 



Two Filter Levels 

• Mesh block average = first filter level 
• Average over array of mesh blocks (2x2x2) = test 

filter level 
• At test filter level, compute nonlinear term in two 

ways 
• Assume nonlinear term has a fixed form (“model”) 

times an unknown coefficient, and coefficient is a 
universal constant. 

• Comparison of two computations yields an equation 
• Common (universal) coefficient in each of the two 

computations is determined from this new equation  



Bar = filter; hat = test filter 
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Bar = filter; hat = test filter 
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Idea of computation, in words 
 

The key idea is two different filter levels, fine and course 
At the course level, the SGS can be computed in two distinct ways. 
•   
 Each has 2 terms, one that can be evaluated from grid level 
 information and one that cannot. 
The difference of the two thus has 4 terms. 

 
 But by a miracle, the two non-computable terms cancel. 
 So the difference is computable from grid level information. 
 
Set the difference equal to the difference of the models (gradient diffusion 
 models), these are both computable, but with unknown coefficients. 
•   
 Assume identical coefficients (after scaling out delta x factor). 
 Result is one equation for one unknown coefficient. 
•   
 At least in the most favorable case, isotropic L_kk case. 
Otherwise, many equations one coefficient, use least squares for 
best choice of coefficient. 
 



Kolmogorov 41 
• The opposite and also very successful idea in 

turbulence is that the main coupling and 
influence between length scales is that large 
scale motions (eddies) influence small scale 
motions (eddies) but not the opposite. 

• Distinguish three ranges of length scales: 
– Large scale motions, very problem dependent 

and nonuniversal. Called the energy containing 
eddies 

– Intermediate scale motions, called the inertial 
range, because governed by Euler, not Navier-
Stokes effects 

– Dissipation range, in which viscosity plays a role. 
Starts at a length scale for which the flow is 
laminar (nonturbulent), called the Kolmogorov 
scale 

• K41 is a theory of the inertial range. It is a 
theory for E. It is a theory for E(k) as a function 
of k, for frequencies corresponding to the 
inertial range 
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K41 and E(k) 
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Cambridge University Press. 1955, Chapter 6 



Dimensional Analysis 
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K41: Hypothesis of Universal Tubulence in 
the Inertial Range 

• Dimension [] of E(k): 

 

 

• E(k) must have the 
identical form for every 
k in the inertial range, 
by the universal 
assumption. 

• Thus E(k) can depend 
only on k and epsilon 
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K41, concluded 
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The renormalization group (RNG) 
and scale invariant theories 

Inertial range turbulence is scale invariant.  
It has no preferred length scales. 
 

The Navier-Stokes equation is not scale 
invariant. The viscosity introduces a 
fundamental length scale, the Kolmogorov 
scale               at which viscous effects 
become important. 
 

The Euler equations are scale invariant. 
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Change of length scale 
Change of length scale gives an equation; this 
equation is especially simple and important for 
scale invariant theories. 
 
The change of scale equation is a fundamental 
part of RNG. If the change is stepwise, ie  
then the equation becomes a group operation, 
hence the term RNG. 
 
RNG has three basic steps. 

/ 2l l



Three RNG Steps 
1. Apply the change of scale to integrate 

the model equations for one length 
scale, either differentially or stepwise. 

2. Modify certain parameters in the 
theory, to achieve effective agreement 
with experiment, or otherwise avoid 
modifying the problem in an essential 
manner. 

3. Reformulate (rescale) the full problem, 
to keep the currently active scale at a 
fixed size. 



The Result 
The result, if it converges, is an RNG fixed 
point, that is scale invariant. For a scale 
invariant problem, the fixed point is often of 
especial significance, leading for example to 
scaling laws and exponents, as in K41. 
 
The bad news: all problem specific details 
are removed in the rescaling step. Ie, the 
original problem -> infinite distance. 



A 2 Step RNG for LES 
LES is basically steps 1, 2 of the RNG. 
 

Mesh refinement is the basic integration step, 
while the SGS subgrid terms are the basic 
parameter resetting step. 
 

We skip the rescaling step. Then scale 
invariance emerges as a small length scale 
asymptotic property, to which the RNG power 
laws apply. 
 

We have the best of both worlds, the RNG 
scaling laws and the important problem 
specific details. 



AN RNG Reformulation of LES 

 
   author =      "J. Glimm and W. Hu and H. Lim and B. Plohr and D. H. 
Sharp", 
   title =       "Large Eddy Simulation, Turbulent Transport and the 
Renormalization Group", 
   year =        "2016", 
   journal =     "Ann. Math. Sci. and Applications", 
   volume =      "1", 
   pages =       "149-180", 
   note =        "Los Alamos Preprint LA-UR-12-26149. Stony Brook 
University Preprint Number SUNYSB-AMS-15-05", 
 
 



PDF Convergence 

 

•   author =       "G.-Q. Chen and J. Glimm", 

•   title =    “Kolmogorov's Theory of Turbulence and 
Inviscid Limit of the Navier-Stokes equations in R3", 

•   year =     "2010", 

•   journal =  "Commun. Math. Phys.", 

 



Definitions 

• Weak solution 
– Multiply Navier Stokes equation by test function, integrate by parts, 

identity must hold. 

• Lp convergence: in Lp norm  

• w* convergence for passive scalars chi_i 
– Chi_i = mass fraction, thus in L_\infty. 

– Multiply by an element of dual space of L_\infty 

– Resulting inner product should converge after passing to a 
subsequence 

– Theorem: Limit is a PDF depending on space and time, ie a measure 
valued function of space and time. 

– Theorem: Limit PDF is a solution of NS + passive scalars equation. 


